Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 42(4): 112380, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37061916

RESUMO

Recent advances in synthetic embryology have opened new avenues for understanding the complex events controlling mammalian peri-implantation development. Here, we show that mouse embryonic stem cells (ESCs) solely exposed to chemical inhibition of SUMOylation generate embryo-like structures comprising anterior neural and trunk-associated regions. HypoSUMOylation-instructed ESCs give rise to spheroids that self-organize into gastrulating structures containing cell types spatially and functionally related to embryonic and extraembryonic compartments. Alternatively, spheroids cultured in a droplet microfluidic device form elongated structures that undergo axial organization reminiscent of natural embryo morphogenesis. Single-cell transcriptomics reveals various cellular lineages, including properly positioned anterior neuronal cell types and paraxial mesoderm segmented into somite-like structures. Transient SUMOylation suppression gradually increases DNA methylation genome wide and repressive mark deposition at Nanog. Interestingly, cell-to-cell variations in SUMOylation levels occur during early embryogenesis. Our approach provides a proof of principle for potentially powerful strategies to explore early embryogenesis by targeting chromatin roadblocks of cell fate change.


Assuntos
Embrião de Mamíferos , Sumoilação , Animais , Camundongos , Embrião de Mamíferos/metabolismo , Células-Tronco Embrionárias/metabolismo , Desenvolvimento Embrionário , Diferenciação Celular/fisiologia , Mamíferos
3.
Cell Rep ; 32(11): 108146, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32937131

RESUMO

Post-translational modification by SUMO is a key regulator of cell identity. In mouse embryonic fibroblasts (MEFs), SUMO impedes reprogramming to pluripotency, while in embryonic stem cells (ESCs), it represses the emergence of totipotent-like cells, suggesting that SUMO targets distinct substrates to preserve somatic and pluripotent states. Using MS-based proteomics, we show that the composition of endogenous SUMOylomes differs dramatically between MEFs and ESCs. In MEFs, SUMO2/3 targets proteins associated with canonical SUMO functions, such as splicing, and transcriptional regulators driving somatic enhancer selection. In contrast, in ESCs, SUMO2/3 primarily modifies highly interconnected repressive chromatin complexes, thereby preventing chromatin opening and transitioning to totipotent-like states. We also characterize several SUMO-modified pluripotency factors and show that SUMOylation of Dppa2 and Dppa4 impedes the conversion to 2-cell-embryo-like states. Altogether, we propose that rewiring the repertoire of SUMO target networks is a major driver of cell fate decision during embryonic development.


Assuntos
Cromatina/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Sumoilação , Animais , Diferenciação Celular , Embrião de Mamíferos/citologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Células HeLa , Humanos , Camundongos Endogâmicos C57BL , Proteínas Nucleares/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Especificidade por Substrato , Fatores de Transcrição/metabolismo
4.
Cell Stem Cell ; 23(5): 742-757.e8, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30401455

RESUMO

Understanding general principles that safeguard cellular identity should reveal critical insights into common mechanisms underlying specification of varied cell types. Here, we show that SUMO modification acts to stabilize cell fate in a variety of contexts. Hyposumoylation enhances pluripotency reprogramming in vitro and in vivo, increases lineage transdifferentiation, and facilitates leukemic cell differentiation. Suppressing sumoylation in embryonic stem cells (ESCs) promotes their conversion into 2-cell-embryo-like (2C-like) cells. During reprogramming to pluripotency, SUMO functions on fibroblastic enhancers to retain somatic transcription factors together with Oct4, Sox2, and Klf4, thus impeding somatic enhancer inactivation. In contrast, in ESCs, SUMO functions on heterochromatin to silence the 2C program, maintaining both proper H3K9me3 levels genome-wide and repression of the Dux locus by triggering recruitment of the sumoylated PRC1.6 and Kap/Setdb1 repressive complexes. Together, these studies show that SUMO acts on chromatin as a glue to stabilize key determinants of somatic and pluripotent states.


Assuntos
Cromatina/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Animais , Células Cultivadas , Reprogramação Celular , Fator 4 Semelhante a Kruppel , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Transcrição/metabolismo
5.
Cell Rep ; 18(12): 2907-2917, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28329683

RESUMO

The most aggressive of four medulloblastoma (MB) subgroups are cMyc-driven group 3 (G3) tumors, some of which overexpress EZH2, the histone H3K27 mono-, di-, and trimethylase of polycomb-repressive complex 2. Ezh2 has a context-dependent role in different cancers as an oncogene or tumor suppressor and retards tumor progression in a mouse model of G3 MB. Engineered deletions of Ezh2 in G3 MBs by gene editing nucleases accelerated tumorigenesis, whereas Ezh2 re-expression reversed attendant histone modifications and slowed tumor progression. Candidate oncogenic drivers suppressed by Ezh2 included Gfi1, a proto-oncogene frequently activated in human G3 MBs. Gfi1 disruption antagonized the tumor-promoting effects of Ezh2 loss; conversely, Gfi1 overexpression collaborated with Myc to bypass effects of Trp53 inactivation in driving MB progression in primary cerebellar neuronal progenitors. Although negative regulation of Gfi1 by Ezh2 may restrain MB development, Gfi1 activation can bypass these effects.


Assuntos
Neoplasias Cerebelares/patologia , Proteínas de Ligação a DNA/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Meduloblastoma/genética , Meduloblastoma/patologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores de Transcrição/genética , Regulação para Cima/genética , Animais , Carcinogênese/metabolismo , Carcinogênese/patologia , Neoplasias Cerebelares/genética , Proteínas de Ligação a DNA/metabolismo , Progressão da Doença , Deleção de Genes , Regulação Neoplásica da Expressão Gênica , Camundongos Nus , Mutação/genética , Invasividade Neoplásica , Proteínas de Neoplasias/metabolismo , Oncogenes , Complexo Repressor Polycomb 2/metabolismo , Ligação Proteica , Proto-Oncogene Mas , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...